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Abstract. We consider energy absorption by driven chaotic systems of the symplectic symmetry class.
According to our analytical perturbative calculation, at the initial stage of evolution the energy growth
with time can be faster than linear. This appears to be an analog of weak anti-localization in disordered
systems with spin-orbit interaction. Our analytical result is also confirmed by numerical calculations for
the symplectic quantum kicked rotor.

PACS. 05.45.Mt Quantum chaos; semiclassical methods – 73.21.La Quantum dots – electron states
– 73.23.-b Electronic transport in mesoscopic systems – 73.20.Fz Weak or Anderson localization

1 Introduction

The problem of energy absorption in a system driven by
an external time-dependent field is fundamental and im-
portant in many areas of modern physics. For a metal-
lic sample of the volume V in an external electric field
E(t) = E0 cosωt the textbook solution to this problem is
given by the expression for the Joule heating in the Ohmic
regime: W0 = V σ0 E2

0/2, is the constant energy absorption
rate determined by the Drude conductivity σ0.

This classical picture is based on the linear response
theory for systems with essentially continuous spectrum of
electron states. For quantum systems with few degrees of
freedom or for mesoscopic systems with many degrees of
freedom but still appreciable level separation the Ohmic
regime may break down leading to a time-dependent ab-
sorption rate W (t).

This point can be illustrated by an example of the
quantum kicked rotor (QKR) with the Hamiltonian:

Ĥ =
�̂2

2I
+ K V (θ)

∞∑

n=−∞
δ(t − nT ), V (θ) = cos θ, (1)

where �̂ = −i∂/∂θ is the angular momentum, I is the
moment of inertia, and K is a constant controlling the
strength of perturbation. For generic sufficiently large K
the classical dynamics described by the Hamiltonian (1)
is completely chaotic. The period-averaged energy absorp-
tion rate W0 = K2/(4TI) in this case is independent of
time, analogously to the Ohmic absorption. Yet at suf-
ficiently long times t � t∗ ∼ K2I2/T the Ohmic regime

a e-mail: aossipov@ictp.trieste.it

breaks down because of the accumulation of quantum cor-
rections and the absorption rate decreases to zero. This
effect is known as dynamic localization (DL) in the en-
ergy space [1], and is analogous to Anderson localization
for disordered systems [2]. Such behavior is not specific to
QKR, it occurs in other chaotic systems [3,4].

However, if T/(4πI) takes a rational value, the sepa-
ration between certain energy levels of the rotor becomes
an integer multiple of the frequency 2π/T , and the ab-
sorption rate is linear in time: W (t) ∝ t [1]. The same
takes place for a harmonic oscillator coupled to the ex-
ternal harmonic field via the coordinate, when the fre-
quency of the field is exactly at resonance with the oscil-
lator frequency [5]. Fermi accelerator is another example
of a system where W (t) can grow with time [6]. Such an
anomalous (growing with time) super-Ohmic behavior is
typical of resonances. In contrast to the localization, it is
analogous to the ballistic transport through resonant lev-
els in a tight-binding model of 1d crystals. One can trace
it back to the classical integrability of the system with a
time-dependent perturbation.

In this letter we consider a class of chaotic systems
without resonances which show the super-Ohmic energy
absorption. Namely, we focus on the quantum correc-
tions δW (t) to the energy absorption rate in the time-
dependent random matrix theory (RMT) of the symplectic
symmetry class, described by the Hamiltonian:

Ĥ(t) = Ĥ0 + V̂ φ(t), (2)

which possesses the time-reversal symmetry, but not the
spin-rotation symmetry. Here Ĥ0 and V̂ are random
matrices [7] whose symmetry will be specified below,
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and φ(t) is a given function of time. This model describes
e.g. the dynamics of electrons in driven quantum dots in
the presence of a spin-orbit interaction.

The corresponding problem for the orthogonal and uni-
tary symmetry classes has been recently considered [8] and
analytical expressions for δW (t) have been obtained. For
the harmonic perturbation φ(t) = cosωt switched on at
t = 0, the absorption rate W (t) appears to be related
to the frequency-dependent diffusion coefficient D(ω) in a
quasi-1d disordered wire of the corresponding symmetry
class, with the quantum corrections included:

W (t)
W0

=
∫ +∞

−∞

dω

2π

e−iωt

(−iω + 0)
D(ω)
D0

, (3)

where D0 is the classical diffusion coefficient. This rela-
tionship does not contain any specific feature of the model
and is also valid for the QKR in the region of parame-
ters where it can be mapped onto the quasi-1d nonlin-
ear σ-model [9]. If equation (3) is valid in the symplectic
case as well, the energy absorption rate W (t) should grow
with time beyond the Ohmic limit W0, as D(ω) is known
to have positive quantum corrections in the presence of
a spin-orbit interaction [10]. Our calculations presented
below show that this is indeed the case.

2 Choice of the model

We adopt the following single-electron Hamiltonians,
which turns out to be the most convenient technically for
perturbative calculations:

Ĥ(t) =
p̂2

2m
+ U(r) + Ûso(r) + V (r)φ(t), (4)

where p̂ = −i∇, and U(r) and V (r) are independent
Gaussian random fields: 〈U(r)U(r′)〉 = aUδ(r − r′),
〈V (r)V (r′)〉 = aV δ(r − r′). The spin-orbit interaction is
also taken to be random [10,11]:

Ûso(r) = σ [∇Uso(r) × p̂] , (5)

where 〈Uso(r)Uso(r′)〉 = asoδ(r− r), and σ = (σx, σy, σz)
are Pauli matrices.

The advantage of the model (4) is that the spin-orbit
coupling and the driving perturbation are represented by
random locally correlated fields. This makes it possible,
after a proper re-formulation [12,13] within the Keldysh
formalism [14], to apply basic rules of the impurity di-
agrammatic technique [15] and its extension used in the
theory of weak Anderson localization and mesoscopic phe-
nomena [16] to consider essentially nonlinear in the driving
perturbation, non-equilibrium problems.

In the absence of the time-dependent term equation (4)
is a basic model for describing disordered metals with a
random spin-orbit interaction. The kinetic energy term
determines the bulk density of states ν (per unit vol-
ume, per spin projection). Then aU = 1/(2πντ0) and
[p× p′]2 aso = 1/(2πντso), where τ0 is the momentum

relaxation time, τso � τ0 is the spin relaxation time,
and [p × p′]2 denotes the momentum product averaged
over the Fermi surface. It has been shown [17] that for
a finite sample in the long-time, low-energy limit ε �
1/τso � ETh (ETh being the Thouless energy) this model
reduces to the zero-dimensional nonlinear σ-model which,
in turn, is equivalent to the RMT of the symplectic sym-
metry class. This corresponds to Ĥ0 in equation (2) being
a random matrix from the Gaussian symplectic ensemble
(GSE) with the mean energy level separation δ = 1/(2νV).

The equivalence of the model (4) to the time-depen-
dent RMT can be also demonstrated, but it requires ad-
ditional conditions:

aV

aU
= 4Γτ0 �

(
ω

ETh

)2

� 1. (6)

Here we have introduced a parameter Γ = πνaV /2. We
will always be interested in the limit δ � Γ � ω,
in which case 1/Γ is the time required to absorb one
photon, as given by the Fermi Golden Rule. The first
condition (6) allows to neglect the multi-photon absorp-
tion processes which can easily violate the condition of
small energy transfer ∆ε � ETh even when the condition
ω � ETh is fulfilled. Under the conditions (6) the last
term of equation (4) corresponds to V̂ φ(t) of equation (2)
with V̂ being a random matrix from the Gaussian orthog-
onal ensemble (GOE), whose matrix element mean square
is given by Γδ/π.

We note that if instead of the time-dependent pertur-
bation with random V (r) one considers a more physical
form of the perturbation with some fixed V (r) correspond-
ing to a uniform electric field or a modulation of the quan-
tum dot confinement potential, one can show [12,13] that
under the conditions (6), where only the basic symmetries
(time-reversal, spin-rotation) matter, it will be equivalent
to the same RMT with a properly redefined Γ . However,
calculations would be quite cumbersome in this case be-
cause of the necessity to take into account boundary con-
ditions. The coupling by a random field V (r) with local
correlations helps to avoid this technical problem.

We also note that instead of equation (4) one can con-
sider a model where spin-orbit interaction is in the time-
dependent term: Ĥ(t) = p̂2/2m+U(r)+Ûso(r)φ(t). It cor-
responds to a different kind of the time-dependent RMT,
where in equation (2) Ĥ0 is taken from GOE and V̂ from
GSE. Still, the result turns out to be the same as for the
model (4), being remarkably robust and independent of
whether the spin-rotational invariance is broken in the
time-independent or in the time-dependent term [see also
the discussion after Eq. (12)].

3 Weak dynamic antilocalization

The model (4) allows for a perturbative treatment which
is very similar to the theory of weak Anderson localiza-
tion [16]. The building blocks of this theory are ladder di-
agrams: the diffuson and the cooperon (Fig. 1). The latter
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Fig. 1. Diagrammatic representations for (a) diffuson, (b)
cooperon; the Greek indices label the spin projections ↑, ↓.

can also be represented as the maximally crossed (“fan”)
series of diagrams. In general they are functions of time
and momentum. However, in the RMT, or ergodic, limit
the main contribution to observables is done by the zero
momentum mode. In this limit the diffuson Dαβ

γδ (t, t′; η)
and the cooperon Cαβ

γδ (η, η′; t) are given by:

Dαβ
γδ (t, t′; η) = (1/2)D(t, t′; η)

×
[
δαγδδβ + e−

4(t−t′)
3τso σαγσδβ

]
, (7)

Cαβ
γδ (η, η′; t) = C(η, η′; t)

×
[
〈αγ|P̂0|βδ〉 + e−

2(η−η′)
3τso 〈αγ|P̂1|βδ〉

]
, (8)

where P̂0,1 are the projectors on the subspaces with the
total spin S = 0, 1, respectively:

〈αγ|P̂0|βδ〉 = σy
αγσy

δβ/2, (9)

〈αγ|P̂1|βδ〉 =
(
δαγδδβ + σx

αγσx
δβ + σz

αγσz
δβ

)
/2. (10)

D(t, t′; η) and C(η, η′; t) are defined as follows:

D(t, t′; η) = θ(t − t′) exp
{
−

∫ t

t′
γ(t′′, η)dt′′

}
, (11)

C(η, η′; t) = θ(η − η′) exp
{
−1

2

∫ η

η′
γ(t, η′′)dη′′

}
, (12)

where γ(t, η) is determined by the external field:

γ(t, η) ≡ Γ [φ(t + η/2) − φ(t − η/2)]2. (13)

Note that equations (7, 8) retain crossover triplet
terms. At times larger than τso they decay exponentially,
and the results reduce to those for the RMT model (2)
with Ĥ0 from GSE, which corresponds to τso → 0, so that
in this model the triplet term would be absent from the
very beginning. The RMT model (2) with Ĥ0 from GOE
and V̂ from GSE would correspond to a finite τso.

The diagrammatic technique in the Keldysh represen-
tation allows to calculate the time- and energy-dependent
electron distribution function f(ε, t), from which one de-
duces the energy absorption rate:

W (t) =
∂

∂t

∫
ε f(ε) dε. (14)

The expansion in the number of the diffuson or cooperon
loops corresponds to the expansion in the powers of the
mean level spacing δ, which is assumed to be the small-
est energy scale of our problem [8,13]. The leading con-
tribution is given by diagrams containing no diffuson or
cooperon loops; it corresponds to the Ohmic absorption
with the rate

W0 =
2Γ

δ
(∂tφ)2, (15)

where the overline denotes the average over the period.
The next order correction to the Ohmic absorption rate is
obtained by taking into account one-loop diagrams:

W (t) = W0 +
Γ

π

∫ t

0

(
3e

−4η
3τso − 1

)

× ∂tφ(t) ∂tφ(t − η)C(η,−η; t − η/2) dη. (16)

For φ(t) = cosωt the long-time behavior (t � 1/Γ ) of the
above expression takes the following form:

W (t)
W0

= 1 +
{−√

t/t∗, t � τso, t∗,
(1/2)

√
t/t∗, τso � t � t∗,

t∗ =
π3Γ

2δ2
.

(17)
These two limiting cases differ by the presence or absence
of the triplet contribution and correspond to the orthogo-
nal or symplectic symmetry classes. Thus the weak local-
ization correction to the classical absorption rate in the
symplectic case is positive and its magnitude is half that
for the orthogonal case. Exactly the same holds for the
weak localization correction to the conductivity of a quasi-
1d disordered wire [10], so the relation (3) is extended also
to the symplectic case.

The perturbative result (17) is valid only for times
t � t∗. At t � t∗ the relation (3) suggests to use the
known results for a quasi-1d wire [17], where, in spite of
the positive sign of the first weak localization correction,
all states are localized, with the localization length four
times larger than in the orthogonal case. Localization im-
plies D(ω) → 0 at ω → 0, for which equation (3) gives
W (t) → 0 at t → ∞.

4 Quantum kicked rotor with spin

The exact time dependence of the correction (17) is de-
rived rigorously for the disordered model (4). However, one
can expect that the increase of the energy absorption rate
in time is a general result valid for an ergodic dynamical
system possessing symplectic symmetry. In order to sup-
port this statement we introduce a spin degree of freedom
into the standard kicked rotor model [18]. Correspond-
ingly, V (θ) in the Hamiltonian (1) acquires a 2×2 matrix
structure:

V (θ) = cosα cosβ cos θ

+
σx

2
cosα sin β sin 2θ + σz sinα sin θ,

where the parameters α and β allow to switch between
different symmetry classes. Note that the presence of
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Fig. 2. The energy absorption rate as a function of time for
the standard and symplectic kicked rotor. The energy E(t) is
averaged over 100 trajectories with different initial conditions.

both σx and σz terms with different dependencies on θ
is essential, as otherwise the spin sector of the Hamilto-
nian could be diagonalized by a global spin rotation.

In order to observe the dynamical anti-localization we
fix the parameters α = 0.187, β = 1.284 which corre-
sponds to the symplectic symmetry class [18] and study
the evolution of the wave-packets in the momentum space.
The other parameters are T = 1, I = 10 (

√
5 − 1)/(2π),

K = 10 I, and the Hilbert space size �max = 16384. This
model is very convenient for numerical study since the
application of the Floquet operator to a state can be per-
formed by using the Fast Fourier Transform algorithm as
for the standard QKR model. Figure 2 shows that the en-
ergy absorption rate indeed initially increases in time until
the strong localization changes this behavior to the oppo-
site one. For comparison we plot the energy absorption
rate for the standard QKR calculated for the same val-
ues of T, I and K as well. Here, in contrast, the quantum
correction is negative from the very beginning.

5 Conclusions

The main results of the paper are represented by equa-
tion (17) and Figure 2. The former shows that the analogy
between the energy absorption by an ac driven chaotic
quantum dot and the propagation in a quasi-1d disor-
dered wire is valid also in the presence of the spin-orbit
interaction, i.e. for systems of the symplectic symmetry
class, at least at the level of the first weak anti-localization
correction. Numerical results for the quantum kicked ro-
tor exhibit qualitatively the same behavior: weak dynamic

anti-localization at shorter times, and strong dynamic lo-
calization at longer times. At the weak anti-localization
stage the energy for both chaotic systems exhibits a pecu-
liar super-Ohmic growth in time, in spite of the fact that
no resonances are present in the considered systems.

We thank V.I. Fal’ko for fruitful discussions.
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